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We consider the application of Fictitious Domain approach combined with least squares
spectral elements for the numerical solution of fluid dynamic incompressible equations.
Fictitious Domain methods allow problems formulated on a complicated shaped domain
X to be solved on a simpler domain P containing X. Least Squares Spectral Element
Method has been used to develop the discrete model, as this scheme combines the gener-
ality of finite element methods with the accuracy of spectral methods. Moreover the least
squares methods have theoretical and computational advantages in the algorithmic design
and implementation. This paper presents the formulation and validation of the Fictitious
Domain Least Squares Spectral Element approach for the steady incompressible Navier–
Stokes equations. The convergence of the approximated solution is verified solving two-
dimensional benchmark problems, demonstrating the predictive capability of the proposed
formulation.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical models used for describing the behavior of natural and manmade systems are usually based on partial dif-
ferential equations (PDEs) that typically give the rate of change both in time and space of physical conservative quantities,
such as mass, momentum and energy. Numerical solution of systems of PDEs is useful to reproduce past and predict future
behavior of the system for a better understanding of the underlying mechanisms. One of the more difficult tasks for an effi-
cient numerical solution of PDEs is the discretization of the model into finite elements or volumes. Typically this operation is
time-consuming and the accuracy of numerical solution is strongly dependent on the quality of the mesh.

In this sense the Fictitious Domain approach, which is the formulation we propose in this paper, presents a great advan-
tage. It is a methodology for numerical resolution of differential problems where the mesh is simple to construct and there is
no need to create a different mesh for each new geometry of the problem. In fact the Fictitious Domain method allows prob-
lems formulated on a complicated shaped domain X to be solved on a simpler domain P containing X. The extension of the
original problem to the fictitious region P=X must be chosen so that the solution of the extended problem restricted to X
coincides with the solution of the original problem. The Fictitious Domain approach, where extended problem is defined
on a simple domain, enables the use of efficient Cartesian grids.

It is easy to understand the appeal of such kind of approach for numerical simulations which involve changing geome-
tries, i.e. flow with moving bodies, shape optimization problems, elastic structures, etc. An innovative application of the Fic-
titious Domain approach can be found in Parussini and Pediroda [1,2] where it has been used together with Polynomial
Chaos methodologies for the study of geometric uncertainties.
. All rights reserved.

i), pediroda@units.it (V. Pediroda).

mailto:lparussini@units.it
mailto:pediroda@units.it
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


3892 L. Parussini, V. Pediroda / Journal of Computational Physics 228 (2009) 3891–3910
Actually the Fictitious Domain method is not itself a novelty. Literature on Fictitious Domain methods goes back to the
60s [3]. In the following years there has been an increasing interest on this kind of methodologies. So that several approaches
have been developed to implement immersed conditions and we can find different applications: to acoustics [4–6], fluid
dynamics [7,8], bio-medical problems [9–11]. Many methods have been introduced such as the Boundary Lagrangian meth-
od [12–14], Distributed Lagrangian method [8,11,15,16], Immersed Boundary method [17], Immersed Continuum method
[18], Immersed Interface method [19], Fat Boundary method [20], Elimination method [21], Penalty method [22] and Im-
mersed Finite Element method [23]. Although many methods have been proposed in a finite element, finite difference or
finite volume context only few publications exist on the performance of non-matching approaches for high-order discreti-
zations such as the spectral/hp element method. The spectral/hp approximation is based on higher-order functions, locally
defined over finite size parts of domain. The advantage of such kind of method, in comparison with traditional finite element
method, is its exponential convergence property with the increasing of polynomial order p, if the exact solution is sufficiently
smooth.

A first example of Fictitious Domain approach with higher-order discretizations can be found in Dong et al. [24], where
the Fictitious Domain method, as exploited by Glowinski et al. [25] in a finite element code, has been explored for a spectral/
hp framework. A distributed Lagrange multiplier was used to couple the object to the underlying fluid. Exponential p-con-
vergence was demonstrated for a Fictitious Domain approach with overlapping fluid domains and further performance was
tested using the exact solution for a Wannier flow (Stokes flow) and using the flow around a cylinder (Navier–Stokes).

Another example is represented by Parussini [26], which is a first attempt of the authors of the present paper to develop a
coupled methodology Fictitious Domain-Spectral Element Method (FD-SEM). The method was applied to heat conduction
problems.

The new approach, we present in this paper, is the coupling of Fictitious Domain according to Boundary Lagrangian ap-
proach [12] together with the Least Squares Spectral Element Method (LSqSEM) [27,28]. We exploit the LSqSEM, which com-
bines the least-squares formulation with a spectral element approximation. This provides several advantages. The LSqSEM
produces symmetric positive definite linear systems for every type of partial differential equation, i.e. elliptic, parabolic and
hyperbolic equations. No compatibility requirements need to be imposed between approximating function spaces for mixed
problems. Furthermore, no stabilization is required for convection dominated flows.

When we use the Fictitious Domain approach together with LSqSEM, this leads to symmetric indefinite systems and com-
patibility requirements need to be imposed between approximating spaces of Lagrange multipliers, used to enforce the con-
straints on the immersed boundary, and the other functions. It may seem the introduction of Fictitious Domain approach
sacrifices the benefits of least-squares formulation, but the peculiarities of LSqSEM are still advantageous for the coupled
method, as illustrated in Section 4.

The above mentioned coupled methodology, the Fictitious Domain-Least Squares Spectral Element Method (FD-LSqSEM),
have been already proposed by the authors in a previous work [29] for the solution of general two-dimensional elliptic prob-
lems. The aim of the present paper is its theoretical and numerical implementation for the solution of two-dimensional fluid
dynamic incompressible equations.

The paper is organized as follows: Section 2 presents the concept of Fictitious Domain. Section 3 introduces the governing
fluid dynamic equations and the formulation of Fictitious Domain method for Navier–Stokes flows. In Section 4 a brief sum-
mary of the Spectral Element Method is given. Section 5 considers different test problems. Good accuracy properties of the
method are demonstrated by numerical experiments. These ones are performed with several mesh size and polynomial or-
der of modal functions to better quantify the performance of the proposed solution procedure. In Section 6 all the results for
the two-dimensional implementation of FD-LSqSEM will be discussed.
2. Fictitious Domain approach

Fictitious Domain approach have been developed for the solution of differential problems defined on domain changing in
time and space, i.e. in general structural elastic problems, fluid dynamics problems with moving rigid bodies, shape optimi-
zation problems, differential equations defined on stochastic domain, and so on. This means the same problem is solved on
different domains.

Unlike the usual approach, based on the boundary variation technique where a sequence of domains is considered (Fig. 1),
according to Fictitious Domain approach (Fig. 2) the computational domain is not the same as the physical domain of the
problem, but it contains that one. Hence when the physical domain changes the computational domain does not change with
evident advantages.

Several variants of Fictitious Domain method exist: the basic idea is to extend the operator and the domain into a larger
simple shaped domain. The most important ways to do this are algebraic and functional analytic approaches. In algebraic
Fictitious Domain methods the problem is extended typically at the algebraic level in such a way that the solution of the
original problem is obtained directly as a restriction of the solution of the extended problem without any additional con-
straint. There are several variants of such an approach [30] and they can be rather efficient, but typically they are restricted
to quite a narrow class of problems. More flexibility and better efficiency can be obtained by using a functional analytic ap-
proach [21] where the use of constraints ensures that the solution of the extended problem coincides with the solution of the
original problem.



Fig. 1. Classical approach based on the boundary variation technique to solve differential problems defined on domain changing in time and space.

Fig. 2. Fictitious Domain approach to solve differential problems defined on domain changing in time and space.
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In our implementation we enforce constraints by Lagrange multipliers [29].
The physical aspects of the problem can always be stated in a variational principle form, which specifies a scalar quantity,

the functional J, defined by an integral form
J ¼
Z

X
F /;

@/
@x

;
@/
@y

; . . . ; x; y; . . .

� �
dXþ

Z
C

E /;
@/
@x

;
@/
@y

; . . . ; x; y; . . .

� �
dC ð1Þ
where C ¼ @X;/ is the unknown function and F and E are specified operators. The solution to the continuum problem is a
function / which make J stationary with respect to small changes d/; thus, for a solution to the continuum problem, the var-
iation is dJ ¼ 0.

To implement the Fictitious Domain approach we have to extend the operator F and the domain X into a larger simple
shaped domain P and to constrain the functional on C ¼ @X (Fig. 3). To treat such problems Lagrangian multipliers are intro-
duced, so that the problem is now equivalent to find the stationary point of J0, where
Fig. 3. Example of a fictitious rectangular domain P containing the original domain X.
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J0 ¼
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Here kðxÞ is an undetermined multiplier which is in general a function of position, because the local condition must be sat-
isfied at every point of C, rather than being a global restriction.

About the extension of the operator F to the fictitious region, different choices are possible. A common way is to set all the
known functions that appear on the operator F to zero. Moreover in literature there are examples where homogeneous or
periodic constraints are enforced on the boundary CP ¼ @P of fictitious domain. By our experience all these choices influ-
ence the accuracy of the numerical solution, in particular in the region close to the immersed boundary. In our opinion
the best way is to extend the operator F in banal way, that is it will be defined as in the domain X, and to not enforce addi-
tional constraints on the boundary of the fictitious domain.
3. The incompressible Navier–Stokes equations

3.1. The stationary Navier–Stokes equations governing incompressible flow

We consider the stationary Navier–Stokes equations governing incompressible flow, which in dimensionless form can be
stated as follows:
ðu � rÞuþrpþ 1
Re
r � ½ðruÞ þ ðruÞT � ¼ f in X ð3Þ

r � u ¼ 0 in X ð4Þ
u ¼ us on Cu ð5Þ
r � n̂ ¼ fs on Cf ð6Þ
where C ¼ @X ¼ Cu [ Cf and Cu \ Cf ¼ ;, Re is the Reynolds number, u is the velocity vector, p is the pressure, f is a dimen-
sionless force, r ¼ �pIþ 1=Re½ðruÞ þ ðruÞT �, n̂ is the outward unit normal on the boundary of X, us is the prescribed velocity
on the boundary Cu and fs are the prescribed tractions on the boundary Cf . We assume that the problem is well posed and
that a unique solution exists.

3.2. The vorticity based first-order system

We proceed replacing the problem with its first-order equivalent system. We introduce the vorticity vector, x ¼ r� u,
then by making use of the vector identity
r�r� u ¼ �r2uþrðr � uÞ ð7Þ
and in view of the incompressibility constraint given in Eq. (4), the stationary Navier–Stokes equations can be written as
follows:

Find the velocity u(x), pressure pðxÞ and vorticity xðxÞ such that
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Fig. 4. Shape of modal expansion modes for the polynomial order P ¼ 5.
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ðu � rÞuþrpþ 1
Re
r� x ¼ f in X ð8Þ

x�r� u ¼ 0 in X ð9Þ
r � u ¼ 0 in X ð10Þ
r � x ¼ 0 in X ð11Þ
u ¼ us on Cu ð12Þ
x ¼ xs on Cx ð13Þ
The seemingly redundant Eq. (11) is needed in the three-dimensional case to make the system of equations uniformly elliptic
[31]. Typically Cu \ Cx ¼ ;, i.e. if velocity is specified at a boundary, vorticity does not need to be specified there.

3.3. Fictitious domain formulation for Navier–Stokes equations

Let be P the fictitious domain including X. We define the Lagrangian L : X�M ! R as follows:
Lðu;p;x; k; fÞ ¼ 1
2

ðu � rÞuþrpþ 1
Re
r� x� f

���� ����2

0;P
þ kx�r� uk2

0;P þ kr � uk
2
0;P þ kr � xk

2
0;P

 !
þ hk; sui0;Cu

� hk;usi0;Cu
þ hk; sr � n̂i0;Cf

� hk; fsi0;Cf
ð14Þ
with X ¼ fðu; p;xÞ 2 H1ðPÞ � H1ðPÞ �H1ðPÞg and M ¼ fk 2 H�1=2ðCÞg, where the Lagrange multiplier defined on C is de-
noted by k; h�; �i is the duality pairing between M :¼ H�1=2ðCÞ and H1=2ðCÞ and s : H1ðPÞ ! H1=2ðCÞ is the trace mapping.

If constraints have to be enforced on the boundary of the fictitious domain (for example the flow past a body), the velocity
and vorticity constraints will be imposed in strong way, the outflow boundary condition will be enforced in weak sense as
suggested by Ref. [27] for the least-squares formulation.

Using standard calculus of variations techniques we obtain the saddle-point problem:
Find ðu; p;x; kÞ 2 X�M such that
aððu; p;xÞ; ðv; q;wÞÞ þ bððv; q;wÞ; kÞ ¼ lððv; q;wÞÞ 8ðv; q;wÞ 2 X
bððu;p;xÞ;lÞ ¼ gðlÞ 8l 2 M

8><>: ð15Þ
where
aððu;p;xÞ; ðv; q;wÞÞ ¼
Z

P
ðu � rÞuþrpþ 1

Re
r� x

� �
ðv � rÞv þrqþ 1

Re
r� w

� �
dp

þ
Z

P
ðx�r� uÞ � ðw�r� vÞdpþ

Z
P
ðr � uÞ � ðr � vÞdpþ

Z
P
ðr � xÞ � ðr � wÞdp ð16Þ

bððu;p;xÞ;lÞ ¼
Z

Cu

uldcþ
Z

Cf

ðr � n̂Þldc ð17Þ

lððv; q;wÞÞ ¼
Z

P
f � ðv � rÞv þrqþ 1

Re
r� w

� �
dp ð18Þ

gðlÞ ¼
Z

Cu

usldcþ
Z

Cf

fsldc: ð19Þ
The solution of the original problem, Eqs. (3)–(6), will be the restriction to X of the extremum of Lagrangian Eq. (14).
Following the procedure outlined in Section 4 we discretized the saddle-point problem Eq. (15) and we generate a system

of equations for the modal unknown coefficients associated with velocity, pressure, vorticity and Lagrange multipliers. Once
the discrete problem is obtained, it is linearized by Newton’s method [32].
4. hp-Finite element approximation

To get the approximate solution of the minimization problem of least squares functional a numerical method has to be
used. The spectral hp element method is a numerical technique for solving partial differential equations based on the var-
iational formulation of boundary and initial value problems [33–36]. The solution is represented by a finite number of basis
functions. The spectral hp element method is based on higher-order functions, which are locally defined over finite size parts
of domain (elements). The advantage of such kind of method with respect to traditional finite element method is its expo-
nential convergence property with the increasing of polynomial order p, if the exact solution is sufficiently smooth.

Historically there is a distinction between hp type FEM and spectral element method due to the expansion which can be
modal or nodal. In hp-FEM the expansion basis is usually modal, i.e. the basis functions are of increasing order (hierarchical)
and the set of order p� 1 is contained within the set of order p. In modal approach the expansion coefficients do not have any





L. Parussini, V. Pediroda / Journal of Computational Physics 228 (2009) 3891–3910 3897
sup/2H1ðPÞ

R
C l/ds
k/kH1ðPÞ

P �bklkH�1=2ðCÞ; 8l 2 H�1=2ðCÞ ð23Þ
for some �b > 0 independent of the discretization.
In Ref.[12] it has been observed the Eq. (23) constraints the choice of H and h, where H is the characteristic length of La-

grange multiplier elements and h of fictitious domain elements. Intuitively one might think that the smaller the mesh size for
the Lagrange multipliers is chosen, the more accurately one can enforce the boundary constraints. But it has been demon-
strated the LBB-condition is satisfied whenever H=h P c, with c sufficiently large constant which depends on the domain in a
complicated way. This says that the mesh size on the boundary should be larger than that on the domain.

The validity of the LBB condition has been the object of several investigations. In all these contributions the spaces of fic-
titious domain and Lagrange multipliers consist only of piecewise linear and piecewise constant functions, respectively. In
this case, it has been shown that for c ¼ 3, the LBB condition is satisfied (see Ref. [40]). In this work, where spectral element
method is used, the satisfaction of Eq. (23) does not depend only on H and h, but on the chosen expansion polynomial order
of the elements, too. In general the expansion polynomial order of the Lagrange multipliers will be lower than the expansion
polynomial order of fictitious domain. The difference between the polynomial orders to be used depends on the ratio H=h. An
example is shown in Section 5.1.

Finally, it should be mentioned that the obstructions caused by the LBB condition can be avoided by means of stabiliza-
tion techniques, proposed in Ref. [41] and Ref. [42]. These methodologies are under study, for the improvement of the pro-
posed algorithm.

Once the discrete spaces of the unknown functions have been chosen and the approximation is introduced in Eq. (15), we
proceed to generate a system of linear algebraic equations at element level. The integrals in these equations are evaluated
using Gauss–Legendre quadrature rules. The global system of equations is assembled from the element contributions using
the direct summation approach.

The FD-LSqSEM produces symmetric indefinite matrices, but the assembled system of equations can be written as
A BT

B 0

 !
U

k

� �
¼

f
g

� �
ð24Þ
where A is symmetric positive definite and B is the matrix coupling the primal variables U ¼ ðu p x ÞT and the Lagrange
multipliers k.

Let us remark the information on the geometry X is just in B and g. From the first equation we know:
U ¼ A�1ð�BT
kþ fÞ; ð25Þ
so, being from the second equation BU ¼ g, we can write:
BA�1BT
k ¼ BA�1f � g: ð26Þ
We can solve this system by CG method. The size of BA�1BT is much smaller than the size of A.
The advantage of using FD-LSqSEM is evident for problems with moving boundaries or if the same problem has to be

solved for several different boundary conditions. For linear problems the matrix A remains unchanged, so the inversion of
A has to be performed just once. A modification of C only affects B and g, but not A. Anyway the remeshing of P is not
necessary.

5. Numerical results and discussion

5.1. Flow past a 2D spinning cylinder near a moving wall

Let us consider the Wannier flow [33], which has an exact solution in the Stokes regime. The advantage to study a Stokes
flow as first test case is the non-linear terms are not present in the governing equations, so there is no need for linearization
methods.

The Wannier flow is the two-dimensional Stokes flow past a circular cylinder spinning counter-clockwise near a wall that
moves in the streamwise direction. The exact solution (Appendix A) depends only on cylinder radius, R, its rate of rotation, x,
the distance between the center of the cylinder to the moving wall, d, and the velocity of the wall, U (see Fig. 6).

The parameters are chosen as U ¼ 1:0; x ¼ 2:0; R ¼ 0:25 and d ¼ 0:75. In the simulation Dirichlet boundary conditions
are applied in each direction and the pressure p ¼ 0 is enforced in the up-right corner. Fig. 7 shows the contours of u and v
velocity components of the exact solution.

In order to analyze the behavior of LSqSEM when a Fictitious Domain approach is used, we investigate the p-convergence
rates with fixed h-type discretization of fictitious domain and fixed hp-discretization of immersed boundary.

The fictitious domain we use is P ¼ ½�0:75;0:75� � ½�0:75;0:75� including X. To test the FD-LSqSEM approach we con-
sider the connected model Ph of the computational domain P shown in Fig. 8(a).

We use the modal expansions, i.e. the Legendre polynomials, both for quadrilateral elements of fictitious domain and for
curvilinear elements of immersed boundary. The resulting linear system of equations is solved using a direct method, which



Fig. 6. Sketch of the flow past a spinning cylinder near a moving wall.
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performs an LU decomposition with partial pivoting and solves the triangular system through forward and backward
substitution.

In Fig. 8, the Root Mean Square Errors (RMSEs) of u and v velocities are plotted as function of the expansion order p of
fictitious domain in a linear–logarithmic scale. Each curve relates to a different p-level of the element approximation func-
tions of the Lagrange multipliers on the immersed boundary C.

It is important to observe that the accuracy is pretty much the same for the variables u and v.
Spectral convergence of errors, typical of the LSqSEM case, is no more evident The behavior of FD-LSqSEM approach is due

to LBB-condition. When the hp-refinement of immersed boundary is fixed, the LBB-condition is not satisfied for every hp-dis-
cretization of fictitious domain. But as long as the LBB-condition is satisfied the curves show a spectral convergence as in the
LSqSEM case. This implies there is a relationship between the hp-discretization of the fictitious domain and hp-discretization
of the immersed boundary which has to be satisfied for the spectral convergence of the method.

In general it has been observed that the difference between the polynomial orders to be used depends on the ratio H=h,
where H is the characteristic length of Lagrange multiplier elements and h of fictitious domain elements. If the expansion
polynomial order of the fictitious domain is P, the expansion polynomial order of the Lagrange multipliers should be
P � 1 for H=h � 3; P � 5 for H=h � 1 and P � 9 for H=h � 1=3. Figs. 9–11 show the RMSEs of u velocity as function of the
expansion order P of fictitious domain in a linear–logarithmic scale, where each curve corresponds to a different constant
difference between the polynomial orders of the fictitious domain and the Lagrange multipliers. Fig. 9 refers to a computa-
tional domain with H=h � 3, for p� pLM ¼ 1 a spectral convergence of the error can be observed. Fig. 10 refers to a compu-
tational domain with H=h � 1, for p� pLM ¼ 5 a spectral convergence of the error can be observed. Fig. 11 refers to a
computational domain with H=h � 1=3, for p� pLM ¼ 9 a spectral convergence of the error can be observed.

Actually this behavior has been observed in most of the problems under study, but more tests and verifications are
needed to assert this is a general rule.

5.2. Kovasznay flow

Let us consider a two-dimensional steady flow in X ¼ ½�0:5;1:5� � ½�0:5;1:5�. We use Kovasznay’s solution (Appendix B)
to the stationary incompressible Navier–Stokes equations to verify spectral convergence of the FD-LSqSEM numerical algo-
rithm. Fig. 12 shows the exact solution for Re ¼ 40, in particular the u-velocity field and the pressure field.
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The fictitious domain we use is P ¼ ½�0:75;1:75� � ½�0:75;1:75� including X. Fig. 13 shows the discretization of the do-
main into a non-uniform mesh of eight quadrilateral finite elements Pe. The exact solution is used to prescribe Dirichlet
velocity boundary conditions on C and pressure is specified at point (�0.5,�0.5). The immersed boundary C is discretized
into linear elements. Several h-refinements are considered. Fig. 13 shows those ones investigated.
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The global system of equations we obtain assembling the element contributions is linearized using Newton’s method and
the resulting linear algebraic system of equations is solved using a direct algorithm based on LU decomposition at each New-
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ton step. Non-linear convergence is declared when the relative norm of the residual in velocities kDuhpk=kuhpk is less than
10�4.

In Figs. 14 and 15 we plot the Root Mean Square Error of the velocity u and pressure p fields as a function of the expansion
order of the fictitious domain elements in a logarithmic–linear scale for the computational domain shown in Fig. 13(a) and
Fig. 13(b), respectively.

Several discretization p of Lagrange multipliers are considered: Lagrange multipliers function are expanded into a poly-
nomial series of order p ¼ 1; p ¼ 3 and p ¼ 5. Moreover the error of numerical solution obtained by FD-LSqSEM is compared
to the numerical solution obtained by LSqSEM using the non-uniform mesh of eight quadrilateral finite elements shown in
Fig. 16.

Spectral convergence of errors, typical of the LSqSEM case, is evident. For the FD-LSqSEM approach we observe a different
behavior due to LBB-condition and already described in the previous section.

It is important to observe that the computational domain used for the FD-LSqSEM solution and LSqSEM solution is dis-
cretized into eight quadrilateral spectral elements in both cases, but the computational domain used for the FD-LSqSEM
solution is larger than the computational domain used for the LSqSEM solution. This explains why the errors of the LSqSEM
solution is a few lower than those of FD-LSqSEM solution.

Fig. 17 shows the functional J for the computational domains shown in Fig. 13. These plots emphasize the behavior of FD-
LSqSEM solution with increasing expansion order p of spectral elements due to LBB-condition.

5.3. Flow past a circular cylinder in a 2D channel

We next consider the two-dimensional flow of an incompressible fluid past a circular cylinder. The Reynolds numbers
considered here are 20 and 40, for which a steady-state solution exists. The cylinder is of unit diameter and is placed in
P

R
M

S
E

 u

1 2 3 4 5 6 7 8 9 10 11 12 13
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

LSqSEM
FD-LSqSEM P of LM = 1
FD-LSqSEM P of LM = 3
FD-LSqSEM P of LM = 5

P

R
M

S
E

 p

1 2 3 4 5 6 7 8 9 10 11 12 13
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

LSqSEM
FD-LSqSEM P of LM = 1
FD-LSqSEM P of LM = 3
FD-LSqSEM P of LM = 5

Fig. 14. Kovasznay flow: RMSE of numerical solution versus the expansion order P of fictitious domain elements for the computational domain shown in
Fig. 13(a): (a) u-velocity and (b) pressure p. Several discretization p of Lagrange multipliers have been considered: Lagrange multipliers function has been
expanded into a polynomial series of order P ¼ 1; P ¼ 3 and P ¼ 5.



X

Y

-0.75 -0.25 0.25 0.75 1.25 1.75

-0.75

-0.25

0.25

0.75

1.25

1.75

Fig. 16. Kovasznay flow: computational domain discretized into eight quadrilateral finite elements.

P

R
es

id
ua

l

1 2 3 4 5 6 7 8 9 10 11 12 13
10-20

10-15

10-10

10-5

100

LSqSEM
FD-LSqSEM P of LM = 1
FD-LSqSEM P of LM = 3
FD-LSqSEM P of LM = 5

P

R
es

id
ua

l

1 2 3 4 5 6 7 8 9 10 11 12 13
10-20

10-15

10-10

10-5

100

LSqSEM
FD-LSqSEM P of LM = 1
FD-LSqSEM P of LM = 3

Fig. 17. Kovasznay flow: convergence of residual versus the expansion order P of fictitious domain elements (a) for the computational domain shown in
Fig. 13(a) and (b) for the computational domain shown in Fig. 13(b). Several discretization p of Lagrange multipliers have been considered.

P

R
M

S
E

 u

1 2 3 4 5 6 7 8 9 10 11 12 13
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

LSqSEM
FD-LSqSEM P of LM = 1
FD-LSqSEM P of LM = 3

P

R
M

S
E

 p

1 2 3 4 5 6 7 8 9 10 11 12 13
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

LSqSEM
FD-LSqSEM P of LM = 1
FD-LSqSEM P of LM = 3

Fig. 15. Kovasznay flow: RMSE of numerical solution versus the expansion order P of fictitious domain elements for the computational domain shown in
Fig. 13(b): (a) u-velocity and (b) pressure p. Several discretization p of Lagrange multipliers have been considered: Lagrange multipliers function has been
expanded into a polynomial series of order P ¼ 1 and P ¼ 3.

3902 L. Parussini, V. Pediroda / Journal of Computational Physics 228 (2009) 3891–3910



L. Parussini, V. Pediroda / Journal of Computational Physics 228 (2009) 3891–3910 3903
the finite region ½�15:5;30:5� � ½�20:5;20:5�. The center of the cylinder lies at ðx; yÞ ¼ ð0;0Þ, so that the inflow is located 15.5
cylinder diameters in front of the center of the cylinder and the outflow boundary 30.5 cylinder diameters downstream of
the center of the cylinder. The top and the bottom boundaries are located each 20.5 cylinder diameters above and below the
center of the cylinder. The Reynolds number is based on the free-stream velocity and cylinder diameter.

The boundary condition imposed at the inflow, top and bottom boundaries is the free-stream velocity U1, specified to be
unity, with y-component of velocity set to zero. The outflow boundary conditions are imposed in a weak sense through the
least squares functional (see Ref. [27] for details).

The rectangular finite region P ¼ ½�15:5;30:5� � ½�20:5;20:5� is the fictitious domain we consider. The connected model,
Ph, consists of 483 finite elements and is shown in Fig. 18. The immersed boundary C, where no-slip conditions are enforced,
is discretized into twelve curvilinear finite elements. Fig. 19 shows a close-up view of the geometric discretization of ficti-
tious domain around the circular cylinder and the discretization of the immersed boundary. We use a ninth-order modal
expansion in each element of fictitious domain and a fourth-order modal expansion in each element of immersed boundary.

At each Newton step the linear system of equations is solved using a direct algorithm based on LU decomposition. Non-
linear convergence is declared when the relative norm of the residual in velocity between two consecutive iterations is less
then 10�4.
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Table 1
Flow past a circular cylinder at Re ¼ 20: drag coefficient CD .

ID study References CD CD Lsep Lsep

Re ¼ 20 Re ¼ 40 Re ¼ 20 Re ¼ 40

1 [44s] 2.0200 1.6500 – –
2 [45] 2.0500 1.7000 – –
3 [46] 2.0450 1.5220 0.94 2.345
4 [47] 2.0001 1.4980 0.91 2.24
5 [48] 2.0300 1.5200 0.92 2.27
6 [49] 2.0027 1.5359 0.935 2.325
7 [50] 2.0530 1.5500 0.893 2.1785
8 [51] 1.9980 1.4940 – –
9 [52] 2.0800 1.5490 0.932 2.29
10 [53] – 1.6750 0.90 2.10
11 [54] – 1.6000 – –
12 [27] 2.0862 1.5537 0.93 2.275
13 [55] – – 0.935 2.135
14 [56] – – 0.93 2.130
15 Present prediction 2.0862 1.5525 0.9316 2.2745
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Fig. 23. Flow past a circular cylinder at Re ¼ 20: drag coefficient CD and length of wake bubble Lsep . The ID refers to Table 1.
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literature. In particular we can observe that the solution we obtain with expansion polynomial order p ¼ 9 of fictitious do-
main elements are really close to those ones obtained by Pontaza and Reddy by means of the LSqSEM in Ref. [27].
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Fig. 25.

Schematic illustration of flow over a backward-facing step: geometry of flow field.
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5.4. Flow over a backward-facing step

We consider the two-dimensional steady flow over a backward-facing step at Re ¼ 800. The two-dimensional flow past a
backward-facing step is a standard test problem and it has been addressed by numerous authors using a variety of numerical
and experimental methods [57–61].

The basic flow situation is shown in Fig. 25. Fluid flows with an average velocity U past a step of height H with channel
heights upstream and downstream of the step represented by Hu and Hd, respectively. After the flow separates at the step,
the flow reattaches to the lower wall at the distance xr .

In this work the geometry and boundary conditions are taken from the solution of Lee and Mateescu [57]. The expansion
ratio Hd=Hu tested is 2.0. The origin of the coordinate system is centered at the step corner. Hu is equal to 1.5 and Lu, the
length of the upstream channel, is equal to 5.0. The total length of the channel L is 95.0. The flow is characterized by a Rey-
nolds number Re ¼ UHd=m where U is the average cross-section velocity and m the kinematic viscosity.

We discretize the fictitious domain, P ¼ ½�5:0;90:0� � ½�1:5;1:5� using 63 finite elements. The connected model, Ph, is
shown in Fig. 26. The immersed boundary C, where no-slip conditions are enforced, is discretized into four linear finite ele-
ments. We use an 11th-order modal expansion in each element of fictitious domain and a fifth-order modal expansion in
each element of immersed boundary. The resulting discrete model is linearized using Newton’s method. Non-linear conver-
gence is declared when the relative norm of the residuals in velocities, kDuhpk=kuhpk, is less than 10�4. The analysis starts
with Re ¼ 100 and steps to Re ¼ 800 using a solution continuation technique with increments of Re ¼ 100.
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Fig. 27. Flow over a backward-facing step at Re ¼ 800: streamlines.
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Fig. 28. Flow over a backward-facing step at Re ¼ 800: vector velocity field.
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Fig. 29. Flow over a backward-facing step at Re ¼ 800: pressure contours.
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Fig. 30. Flow over a backward-facing step at Re ¼ 800: horizontal velocity profiles along the height of the channel at x=Hd ¼ 7 and x=Hd ¼ 15. Comparison
with the benchmark solution of Gartling [59].
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Table 2
Flow over a backward-facing step at Re ¼ 800: dimensionless length of reattachment on the lower wall xr , dimensionless length of separation on the upper wall
xs and dimensionless length of reattachment on the upper wall xrs .

ID study References xr xs xrs

1 [57] (MHFS data) 6.45 5.15 10.25
2 [58] – 5.70 10.00
3 [57] 6.0 4.80 10.30
4 [59] 6.1 4.85 10.48
5 [60] 6.0 – –
6 [61] 5.8 – –
7 Present prediction 6.00 5.08 10.35
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Fig. 31. Flow over a backward-facing step at Re ¼ 800: dimensionless length of reattachment on the lower wall xr , dimensionless length of separation on
the upper wall xs and dimensionless length of reattachment on the upper wall xrs . The ID refers to Table 2.
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Fig. 27 shows the streamlines of the computed solution, Fig. 28 the vector velocity field and Fig. 29 the pressure contours
for �5:0 6 x 6 30:0, where the most of the interesting flow structures occur.

Fig. 30 shows the dimensionless velocity profiles, uðyÞ=U, along the channel height, y=Hd, at x=Hd ¼ 7 and x=Hd ¼ 15. We
compare those ones with tabulated values from the benchmark solution of Gartling [59] and find excellent agreement.

Table 2 summarize the measurements of xr ; xs and xrs on the upper and lower walls for Re ¼ 800 present in literature. We
compare the results obtained in the present work with those found in literature.

Fig. 31 show diagrams of the measurements values found in literature with the values obtained by the FD-LSqSEM. Let us
remark the values of xr ; xs and xrs computed in the present work are in good agreement with the referenced solutions.

6. Summary

In this paper we presented the formulation, validation and application of FD-LSqSEM for the Navier–Stokes equations.
The employed Fictitious Domain solver is based on Least Squares Spectral Element Method. This formulation is of partic-

ular interest to study problems on domain which changes in time and space, as Fictitious Domain approach allows avoiding
the remeshing of computational domain in the presence of geometric variations. Its main advantage lies in the fact that only
one Cartesian mesh, that represents the enclosure, needs to be generated.

The excellent convergence of the least squares functional and error were verified using the Wannier flow solution to the
incompressible Stokes equations and the Kovasznay flow solution to the incompressible Navier–Stokes equations. The spec-
tral convergence has been demonstrated till the LBB-condition is satisfied. Numerical results for steady flow past circular
cylinder and incompressible flow over a backward-facing step were presented and found to be in excellent agreement with
benchmark solutions.

Extension of the formulation to the non-stationary Navier–Stokes equations and compressible flows for subsonic/tran-
sonic flow conditions are the subject of forthcoming papers.
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Appendix A. Wannier flow

The Wannier flow is the two-dimensional Stokes flow past a circular cylinder spinning counter-clockwise near a wall that
moves in the streamwise direction. The exact solution of Wannier flow depends only on cylinder radius, R, its rate of rotation,
x, the distance between the center of the cylinder to the moving wall, d, and the velocity of the wall, U. If we place the origin
of the coordinate system at the centre of the cylinder the exact solution is given by the following expressions:
u ¼ U � 2ða1 þ a0Y1Þ
sþ Y1

K1
þ s� Y1

K2

� �
� a0 ln

K1

K2
� a2

K1
sþ Y2 �

ðsþ Y1Þ2Y2

K1

" #
� a3

K2
s� Y2 �

ðs� Y1Þ2Y2

K2

" #
ðA:1Þ

v ¼ 2x
K1K2

ða1 þ a0Y1ÞðK2 � K1Þ �
xa2ðsþ Y1ÞY2

K2
1

� xaaðs� Y1ÞY2

K2
2

ðA:2Þ
where
s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � R2

q
; C ¼ dþ s

d� s
; a0 ¼

U
ln C

; a1 ¼ �d a0 þ
xR2

2s

 !

a2 ¼ 2ðdþ sÞ a0 þ
xR2

2s

 !
; a3 ¼ 2ðd� sÞ a0 þ

xR2

2s

 !
Y1 ¼ yþ d; Y2 ¼ 2Y1; K1 ¼ x2 þ ðsþ Y1Þ2; K2 ¼ x2 þ ðs� Y1Þ2
Appendix B. Kovasznay flow

The solution of Kovasznay flow is given by
u ¼ 1� ekx cosð2pyÞ ðB:1Þ

v ¼ k
2p

ekx sinð2pyÞ ðB:2Þ

p ¼ p0 �
1
2

e2kx ðB:3Þ
where k ¼ Re=2� ðRe2=4þ 4p2Þ1=2 and p0 is a reference pressure (an arbitrary constant).
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